US 7,257,772 B1

3

The terms “markup language” or “ML” refer to a lan-
guage for special codes within a document that specify how
parts of the document are to be interpreted by an application.
In a word-processor file, the markup language specifies how
the text is to be formatted or laid out, whereas in a particular
customer schema, the ML tends to specify the text’s struc-
tural function (e.g., heading, paragraph, etc.) The ML is
typically supported by a word-processor and may adhere to
the rules of other markup languages, such as XML, while
creating further rules of its own.

The term “element” refers to the basic unit of an ML
document. The element may contain attributes, other ele-
ments, text, and other building blocks for an ML document.

The term “tag” refers to a command inserted in a docu-
ment that delineates elements within an ML document. Each
element can have no more than two tags: the start tag and the
end tag. It is possible to have an empty element (with no
content) in which case one tag is allowed.

The content between the tags is considered the element’s
“children” (or descendants). Hence other elements embed-
ded in the element’s content are called “child elements” or
“child nodes” or the element. Text embedded directly in the
content of the element is considered the element’s “child
text nodes”. Together, the child elements and the text within
an element constitute that element’s “content”.

The term “attribute” refers to an additional property set to
a particular value and associated with the element. Elements
may have an arbitrary number of attribute settings associated
with them, including none. Attributes are used to associate
additional information with an element that will not contain
additional elements, or be treated as a text node.

Iustrative Operating Environment

With reference to FIG. 1, one exemplary system for
implementing the invention includes a computing device,
such as computing device 100. In a very basic configuration,
computing device 100 typically includes at least one pro-
cessing unit 102 and system memory 104. Depending on the
exact configuration and type of computing device, system
memory 104 may be volatile (such as RAM), non-volatile
(such as ROM, flash memory, etc.) or some combination of
the two. System memory 104 typically includes an operating
system 105, one or more applications 106, and may include
program data 107. In one embodiment, application 106 may
include a word-processor application 120 that further
includes ML editor 122. This basic configuration is illus-
trated in FIG. 1 by those components within dashed line 108.

Computing device 100 may have additional features or
functionality. For example, computing device 100 may also
include additional data storage devices (removable and/or
non-removable) such as, for example, magnetic disks, opti-
cal disks, or tape. Such additional storage is illustrated in
FIG. 1 by removable storage 109 and non-removable storage
110. Computer storage media may include volatile and
nonvolatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation, such as computer readable instructions, data struc-
tures, program modules, or other data. System memory 104,
removable storage 109 and non-removable storage 110 are
all examples of computer storage media. Computer storage
media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to store the desired information and which can
be accessed by computing device 100. Any such computer

10

15

20

25

30

35

40

45

50

55

60

65

4

storage media may be part of device 100. Computing device
100 may also have input device(s) 112 such as keyboard,
mouse, pen, voice input device, touch input device, etc.
Output device(s) 114 such as a display, speakers, printer, etc.
may also be included. These devices are well know in the art
and need not be discussed at length here.

Computing device 100 may also contain communication
connections 116 that allow the device to communicate with
other computing devices 118, such as over a network.
Communication connection 116 is one example of commu-
nication media. Communication media may typically be
embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and includes any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and
not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other
wireless media. The term computer readable media as used
herein includes both storage media and communication
media.

Word-Processor File Structure

FIG. 2 is a block diagram illustrating an exemplary
environment for practicing the present invention. The exem-
plary environment shown in FIG. 2 is a word-processor
environment 200 that includes word-processor 120, ML file
210, ML Schema 215, and ML validation engine 225.

In one embodiment, word-processor 120 has its own
namespace or namespaces and a schema, or a set of schemas,
that is defined for use with documents associated with
word-processor 120. The set of tags and attributes defined by
the schema for word-processor 120 define the format of a
document to such an extent that it is referred to as its own
native ML.

Word-processor 120 internally validates ML file 210.
When validated, the ML elements are examined as to
whether they conform to the ML schema 215. As previously
described above, a schema states what tags and attributes are
used to describe content in an ML document, where each tag
is allowed, and which tags can appear within other tags,
ensuring that the documentation is structured the same way.
Accordingly, ML 210 is valid when structured as set forth in
arbitrary ML schema 215.

ML validation engine 225 operates similarly to other
available validation engines for ML, documents. ML valida-
tion engine 225 evaluates ML that is in the format of the ML
validation engine 225. For example, XML elements are
forwarded to an XML validation engine. In one embodi-
ment, a greater number of validation engines may be asso-
ciated with word-processor 120 for validating a greater
number of ML formats.

FIG. 3 illustrates an exemplary ML file in accordance with
aspects of the present invention. ML file 300 includes ML
elements. An element in a markup language usually includes
an opening tag (indicated by a “<” and “>”), some content,
and a closing tag (indicated by a “</” and “>”). In this
example, tags associated with ML include a “w:” within the
tag (e.g., 302). The “w:” prefix is used as shorthand notation
for the namespace associated with the element.

The text contained within the document follows the “T”
tag, making it relatively easy for an application to extract the
text content from a word-processing document created in
accordance with aspects of the invention. Given that the



